Proprioception: Beyond The Five Senses

How Understanding Proprioception Can Reduce Pain, Improve Performance, and Keep You Healthier Longer

Aristotle may have identified the five senses of sight, smell, taste, touch, and hearing in his treatise, On The Soul, in 350 BC, but science has come a long way since then. It’s not just the fab five anymore. Your body also has its own sensory Global Positioning System, something Nobel Prize-winning neurophysiologist Charles Scott Sherrington labeled proprioception in 1906.  It’s derived from the Latin words proprius— “one’s own,” and percepio– “perception.” Put simply, it’s your ability to sense your body’s position in space.

Proprioception is dropping your feet on the floor when you get out of bed in the morning without having to look down; keeping your eyes on your laptop at work while you reach for your coffee without spilling it; switching your foot seamlessly from the gas pedal to the brake in the car without bending over to look at the floorboard. You don’t need to think about it, and you don’t need to see your arms, legs, or feet for any of it to occur without incident— it happens automatically, outside of your conscious thought. And though proprioception occurs on a subconscious level, there are things you can do consciously to assess your proprioceptive sense and identify ways to improve it.

Proprioception can be diminished for a number of different reasons, from aging to chronic pain to poor postural habits, leaving you at greater risk of falls or injury. The good news is that there are simple, practical things you can do to develop and strengthen it, enabling you to move and feel better in your own body. But first, what is proprioception?

What Is Proprioception?

Tune Up Fitness co-founder Jill Miller has been studying proprioception her entire career, but the easiest explanation for the concept came in an impromptu conversation with her daughter Lilah, who was four years old at the time. “We were in the car and I said ‘Lilah, isn’t it cool that you can just think about your knee, and you can feel it without even touching it?’ There was a pause for several seconds, and then she said, ‘Yes. Pretend your brain is a finger.’ It was incredible. I said, ‘You’re right. That’s proprioception.’” 

Count on kids to find easier ways to talk about concepts neuroscientists have been grappling with for centuries. 

Whether or not to categorize proprioception as an add-on to Aristotle’s five senses depends on who you’re talking to. Structural Integrator David Lesondak, author of Fascia: What It Is And Why It Matters and host of the podcast “BodyTalk with David Lesondak”, shares the view of many when he refers to it as a sixth sense. “Culturally and colloquially we’ve talked about ESP as the sixth sense forever, but proprioception is the legit sixth sense,” he says. “It’s  related to touch, but it’s not the same thing. It underlies every movement and gesture.” 

Physical therapist Adam Wolf, founder of The Movement Guild in Chicago and author of Foundations of Movement: A Brain-Based Musculoskeletal Approach, thinks of it a little differently. “I don’t think proprioception is the sixth sense,” says Wolf. “I think it’s one of three systems in the body, the other two being the visual (eyes) and vestibular (balance) systems. Those three sensory systems give the various parts of your brain information, and it interprets it so everything can work together. In that way your brain is like the ultimate virtual reality machine.” 

When listening to different professional and scientific perspectives on the concept of proprioception, it can sound more confusing than it actually is, because it often comes down to semantics. Jennifer Milner, Pilates trainer and host of the Bendy Bodies podcast, puts it succinctly and humorously when she says “This is absolutely a conversation that can devolve into a fist fight if you’re having it in the right group of scientists. It’s a complicated conversation, but to me, it’s just your body’s awareness of where you are in space.” Even better, Millner comes through with a Star Wars metaphor everyone can understand; “In the original movie, Luke is training on the Millennium Falcon with the lightsaber. Obi-Wan puts the helmet over Luke’s head so he can’t see and says ‘Just sense it. Sense what’s going on around you.’ That’s Luke’s proprioception getting stronger.” 

So why should you care about proprioception?

Whether it’s a sixth sense as David Lesondak believes, or one of the three sensory systems that drives brain-based movement as Adam Wolf describes, it’s foundational to how we understand and use our bodies. “Can you imagine living in a house and not knowing what the couch or dining room is for?” asks Lesondak. “That’s often how we approach our bodies. But the more we’re in touch with what we’re feeling, the more likely our body will become our friend instead of something we have to fight or struggle with to have it do the things we want. And to me, that’s the real benefit of understanding proprioception. It gives you confidence about how to improve it.” 

Before we take a deep dive on all things proprioception, let’s take a quick look at how it compares to three other terms commonly used in the same conversation as proprioception. They are all different processes, but work together to try to achieve homeostasis in physiological function.

Jargon Alert

  • Proprioception (one’s own): The body’s sense of its position in motion or stillness. Knowing where we are in space.
  • Interoception (inside): Sensations that originate inside the body. Originally was narrowly defined as sensations from the viscera (the organs in the cavities of the body, primarily the abdominal and chest cavities), but has now become more inclusive of other sensations including heart rate, breath, and even the felt experience of emotions. 
  • Exteroception (outside): Sensory inputs that originate outside the body, including sight, smell, touch, hearing, and taste.
  • Kinesthesia: A subtype of proprioception, but instead of position sense, it detects movement or acceleration in the body. 

Source: Meredith Stephens, DPT, MS, PT, LMT, ATSI, BTSI

Proprioception and Daily Activities

Proprioception is part of every move we make, every minute of every day, and no anatomical part may be a better example of this than the ankle. The retinaculum of the ankle— or the fascial band around your ankle— has five times as many proprioceptive nerve endings as anywhere else in your body. Jennifer Milner describes how this plays out in something as simple as stepping off of a curb onto the street. “If you’re walking down the street at night and it’s late, maybe the curb is bigger or higher than you thought it was going to be, so you start to twist your ankle. If you have a lot of proprioceptors down there, then you have a lot of voices shouting back up at your brain, ‘Hey, you’re about to twist your ankle. Right yourself, and fix it before anything happens.’ Your brain thinks ‘Oh my gosh, I’m about to sprain my ankle,’ and fixes it. If you have poor proprioception, then you don’t have a lot of guys down there ready and willing to work, so the message gets to your brain too late and you twist your ankle. It’s the difference between having a 5G network and the Pony Express.”

When Proprioception Goes Wrong

One of the easiest ways to understand proprioception is to hear the stories of those who’ve lost it, through injury or other causes. The most famous case is Ian Waterman, an Englishman who was the subject of the 1997 BBC documentary, “The Man Who Lost His Body.”  Waterman was a 19-year-old employee at a butcher shop when a flu-like infection landed him in the hospital, and he woke up with a total loss of proprioceptive sense. The virus attacked his central nervous system and destroyed all proprioceptive sensory neurons, but left the motor neurons intact. 

Neurons: Cells in the central nervous system that send and receive information to and from the brain. 

The result was that Waterman’s muscles and limbs still worked, but he couldn’t feel where they were in space.  “My limbs were dead to the touch,” he told the BBC documentary crew. Doctors told him he would likely never walk again, but he spent 17 months in a rehabilitation center, determined to avoid the wheelchair he was told he needed. Since Waterman couldn’t depend on proprioception to sense motion from his arms and legs, he had to figure out a workaround, and his eyes became his most valuable asset to regain the life he lived before the virus. In order to move any part of his body, he had to be able to see it while he moved it. “I had to look at everything to control it.” That meant looking at the floor and his feet every time he took a single step; it took him a full year to be able to stand safely. The damage to the nervous system was permanent, so to this day, Ian must focus intently on every move he makes with his body. Nothing happens automatically, the way it does for most people. The lights must be on at all times (if he can’t see what he’s doing, he may collapse), and his days are full of endless readjustments to his surroundings. Even something as simple as picking up an item at the grocery requires him to alter his stance for stability, otherwise a heavy piece of produce can throw off his physical orientation in space and lead to a fall. Despite all of this, Waterman has gone on to lead a full life, and has proven to be an inspiration to others who experienced sudden loss of proprioception. 

Famed neurologist Oliver Sacks wrote about a similar experience he had with a patient in his 1986 bestselling book about neurological disorders, The Man Who Mistook His Wife For A Hat. Sacks treated a woman named Christina, who lost her sense of proprioception after a standard-protocol dose of antibiotics before gallbladder surgery caused acute inflammation, damaging some of her sensory nerves. While one hospital psychiatrist initially dismissed Christina’s condition as “anxiety hysteria,” Sacks and his team did a series of sensory tests that revealed a near-total proprioceptive deficit, similar to Ian Waterman’s experience. After Sacks explained to Christina the interdependence of the three systems of vision, vestibular (balance), and proprioception for body movement, the patient came to the same conclusion that Waterman did; her eyes must step in where her proprioception left her. She told Sacks, “This proprioception is like the eyes of the body, the way the body sees itself. And if it goes, as it’s gone with me, it’s like the body’s blind. My body can’t ‘see’ itself if it’s lost its eyes, right? So I have to watch it — be its eyes. Right?” As with Waterman, Christina’s damage was permanent, but as time went on, she was able to do many of the things she did before her hospitalization and injury, with accommodations. 

While Waterman and Christina are good examples of people who have healthy limbs but no proprioception, neuroscientist V.S. Ramachandran has done groundbreaking work with patients who’ve lost a limb in an amputation or traumatic accident, but still maintain proprioceptive sense in that missing part of the body, a phenomenon known as phantom limb syndrome. Some of these patients experience the feeling of movement or pain in the spot where the limb was, and may complain that the missing limb feels locked in place, causing intense discomfort and cramping. In order to understand how this happens, we first need to understand that our brain has a sensory map that is spatially organized around the way we use our body. Certain parts of our body have more or less “space” in our brains, according to the level of activity. Dr. Meredith Stephens, a specialist in physical therapy, scoliosis rehabilitation, and healthy aging explains it this way: “If you’re a very good piano player, the representation of your hands in the brain map is going to be much bigger than it would be for me, because I don’t play a single instrument. If we think of it from a motor control perspective, when we stop moving things, we lose real estate in the brain. The map in our brain that helps us with the dexterity and movement of that part will shrink. Conversely, if we use something a lot, it gets more real estate in the brain.”

Things That Can Negatively Impact Proprioception

  • Poor postural habits
  • Chronic pain
  • Musculoskeletal injuries like sprains, broken bones, or torn ligaments
  • Surgery
  • Scoliosis
  • Neurological or movement disorders like Parkinson’s Disease and Multiple Sclerosis
  • Conditions that can result in neuropathy (nerve damage), like diabetes, infection, or vitamin deficiency
  • Diseases of the fascia like Ehlers-Danlos Syndrome
  • Aging
  • Hypermobility

Ehlers-Danlos syndrome is an inherited disorder that causes hypermobility of the joints because of an abnormality related to collagen protein. Collagen is a key component of fascia, and if it’s not producing or processing normally, the mechanoreceptors can’t effectively participate in the feedback loop with the brain to support healthy proprioception. Not everyone who is hypermobile has EDS, but many still experience hypermobility in their joints and struggle with proprioception. “Some with hypermobility don’t always sense when enough is enough,” says David Lesondak. “They might go too far because they’re not getting enough feedback in the mechanoreceptors of the fascia.”

Desk Life and Proprioception

Even if you don’t have hypermobility or another underlying condition that negatively impacts proprioception, modern work life can have a dramatic impact on your proprioceptive sense. If you sit all day long at a desk, it’s important to be proactive about enhancing proprioception so you can reduce the risk of injury. 

Dr. Aracelly Latino-Feliz is the founder of The Movement Therapy Institute in Florida and sees how this impacts her clients. “Even if you’re a healthy person, if you’re sitting in a chair for six or seven hours, your body is adapting to being in that position,” says Dr. Latino-Feliz. “Your proprioception will be altered after sitting that long. So you need to understand how it affects your performance so you don’t get injured when you go for a run after work.”  

If you’re living the desk jockey life, there are some quick things you can do after work to bring your body back on board, and boost proprioception before you work out. First, show some love to the front of your hips and thighs, which have been curled up in a seated position all day. 

Another important area to “wake up” is your glutes, which have borne the brunt of your long days in the same chair, participating in one zoom meeting after the other.

How To Improve Proprioception

The most exciting news about proprioception is that there are a lot of things you can do on your own to maintain or improve it. It will give you a better sense of how your body is moving, reduce pain, and reduce injuries. “When you think about it, we cultivate our senses, don’t we?” says David Lesondak. “People can cultivate a phenomenal palate for wine, or particular types of spices, or certain kinds of auditory or visual acuity. It’s the same thing with proprioception. It’s a sense you can cultivate, and the more you cultivate it, the more exquisite it can be.”

Tips To Improve Proprioception

  • Move. Hike, walk, run, dance, do yoga, or any other physical activity that you enjoy.
  • Slow down. If you are trying to correct a movement pattern that has been altered due to injury or surgery, slow it down and take time to really perceive the information coming into your central nervous system.
  • Do movement work in front of a mirror. This will give you additional visual input to help with error correction. Seeing yourself out of balance helps you make the right positional change and strengthens the brain/body connection.
  • Do weight bearing exercises.
  • Try fascial bouncing. Jump up and down 50 times (or stomp your feet if you have arthritis or other pain) to wake up your entire connective tissue system.
  • Walk barefoot on uneven surfaces. The beach, sand boxes, or outdoor areas with small pebbles give your feet opportunities to walk on something other than concrete in stiff shoes. 
  • Challenge your balance. Face the wall and stand on one leg. Hold a small ball or washcloth in your hand and write the letters of the alphabet on the wall with your eyes closed.
  • Breathe. Use your breath to heighten awareness of your ribcage, noticing the expansion through your belly and the rest of your body.
  • Touch. Bring awareness to any part of your body by touching it with your hands, therapy balls, soft foam rollers, or other props. Dry brushing your skin and tapping also heighten sensory inputs.

Understanding proprioception and doing the small daily or weekly activities to support it can have a lasting impact on your health and mobility. Aging is unavoidable, but how we age is up to us in more ways than we often understand. You can be your own health care provider today, and reap the benefits for decades to come. “Prevention starts now,” says Jill Miller. “Slips and falls are the most deadly injuries to people over the age of 80. A fractured hip is the leading cause of death in the elderly, and those fractured hips come from slips and falls. And slips and falls happen because of a lack of proprioception and coordination. You can begin building your confidence and your body competence now.”

David Lesondak believes understanding proprioception allows your body to become your best friend. “When I work with my patients, I often hear the word want. ‘I want more confidence in my body to do X.’ And they get to the point where they feel like they have a new relationship with their body, and it’s their friend now. And to me, that’s the secret sauce. That’s the real gift you get from proprioception.”

Article from Yoga Blog by John Kish.

Further, this is YouTube interview with Mr. Ian Waterman who lost his proprioception as mentioned in the article.